Tuesday, September 29, 2015

WPS & PQR for Dummies

Hey Paul,
I'm reading up on the proper procedure and practices for developing a WPS and PQR, my question is, do you know of any resources that give a sort of 'WPS & PQR For Dummies'.
At current I'm reading through section 4 of D1.1, and taking notes as to what is required. The process we'll be qualifying is an in house change (bevel angle, and a slight change of amperage and travel speed.) that will be implemented into production.
From my limited perspective I'll be writing down the proposed values on the PQR, send it out for testing, if it comes back with a passing marks, I'll used that information to create a WPS.
However, on the PQR forms we have here, there is a line for "Governing WPS"...something about your seminar mentioning "Which comes first, WPS, or PQR" comes to mind, however I'm unable to to more than remember that idea.
Any help on the how-to is much appreciated! And also, do you have some sort of donation or fund in your name? I feel guilty asking for your assistance without some way to pay you back. If you've any ideas, let me know!
Thanks again!
Neil

Hey Neil,

WPS & PQR for Dummies… I like that.
You may find AWS-B2.1 helpful (https://pubs.aws.org/p/1245/b21b21m2014-specification-for-welding-procedure-and-performance-qualification).
Start by writing a “Preliminary WPS” (This could be considered a “Governing WPS”).  This isn’t a real, qualified WPS, it is simply a list of what you’d like your final WPS to look like.  Write each of the essential (and non-essential) variables, as you would like to see them.  Then work backwards to figure out what PQR(s) you’ll need to qualify them (notice, it could be several).
Starting with a Preliminary WPS helps keep you on track and keeps you from making the common mistake of finishing all your testing and concluding with an, “Oh Crap!... (insert problem here)”.  Problems like, “I should have used a Group II steel.” Or “I should have dropped the plate temperature to 50 degrees before starting the root pass (or fill pass).” Or “What was I thinking using a 4 in. pipe?” Or “I should have used a square groove.”  You get my drift.
Once you have a Preliminary WPS, break down each variable and ask yourself,  “What do I need to do to achieve that?”
Chances are your finished WPS will have greater ranges than your Preliminary because you’ll be working with real data.

As for your specific need (bevel angle, and a slight change of amperage and travel speed).  You may find that your original PQR already qualified the joint and parameters to within the ranges you are shooting for.  If so, you simply have to revise, or write an additional WPS.  If not, just go through the steps I laid out above.

This line kinda creeps me out, “I'll be writing down the proposed values on the PQR, send it out for testing, if it comes back with a passing marks, I'll used that information to create a WPS”.
That sounds a little, just-throw-it-over-the-wall-ish to me.  Let me break it down…
You’ll be:
• Writing down the proposed values
• Taking them to the Welder/Technician for feedback
• Observing, measuring and documenting as those proposed values are utilized
• Determining visual acceptance
• Sending the weldment out for NDE and destructive testing
• Reviewing the test results for compliance
• Using your collected data to develop a WPS
You have to be the one insuring every step was followed.  You’ll need to wear the welding helmet to insure technique was correct.  You’ll need to insure the final weldment met the acceptance criteria before NDE/Destructive testing.

And finally (and most important) yes, I have a GoQuenchMe campaign that runs continually.  You show up in my part of the country or I show up in yours and you have to buy the first round.  I believe in keeping it simple.

Cheers!
PWC

Wednesday, September 9, 2015

"Common Sense" not always That common

Hello Paul,
I was hired into the quality group at a company  alongside three other CWI's last October.  I'd been asked to do a lot of paperwork type activities until this last July when they needed
that fourth CWI on the floor.
I seem to have put the floor into shock... for example: for inspecting parts to the tolerances on the drawing and writing a nonconformance when it's out of that tolerance range.  The other inspectors had been trying to convince me to apply "common sense" to let the parts through anyway, even if that meant the associated paperwork doesn't line up with what the physical part is.  I'm still the same person I was when I came through the code clinic, you can guess how the workplace has become increasingly hostile towards me yet again.

I write to ask two quick questions to verify if my thought process is correct if you have a moment:

1. Detailed vs. fit-up tolerances.  The code and chatter on the AWS forum eludes to fit-up tolerances applying to the as detailed one.  So if detailed gave me +10 degrees, fit-up would give an additional 10 degrees - stacking the two together.  I thought I distinctly remembered from the code clinic that the tolerances do not stack, but that both apply to the original, 45 degrees for example.  So the max. would be 55 degrees end of story.  I am not able to find the support in the code for that and was hoping to double check my memory on that.

2. Starts and stops of intermittent welds.  It seems that the D1.1 exception for filling a crater to the full cross section outside of the intermittent area has been taken to the level that the code doesn't apply outside of the intermittent length.  Doesn't it still say we should have complete fusion, and smooth transitions - not worms at the start and stop of those?

Just thought I would check in to make sure I'm not getting off base here.
Thanks,

Jessica P

Hey Jessica,

Let me get right to answering your questions...

When it comes to “AS Fit-up” vs “As Detailed” tolerances, during the seminar I will always emphasize, “For the purpose of this test, do not stack the tolerances.”  I’ll then go on to say, that may happen in life, but do not do it for the purpose of this test.” CWI’s should never use the “As Detailed” tolerances... only the engineer/designer of the part/joint should.  Let me give you some examples:

1.)  A Designer/Engineer calls out a B-U2a with a 45 deg Groove angle.  The shop floor/Welder/CWI can apply the “As Fit-up” tolerances ONLY and the Groove angle can now range from 40-55 degrees.

2.)  A Designer/Engineer calls out a B-U2a with a 55 deg Groove angle (he/she applied the “As Detailed” tolerances).  The shop floor/Welder/CWI can apply the “As Fit-up” tolerances ONLY and the Groove angle can now range from 50-65 degrees.

3.)  A welding symbol calls for a 30 degree V-Groove on a Butt Joint.  The shop floor/Welder/CWI can apply the “As Fit-up” tolerances ONLY and the Groove angle can now range from 25-40 degrees.

4.)  A welding symbol calls for a 35 degree V-Groove on a Butt Joint (engineer applied the “As Detailed” tolerances).  The shop floor/Welder/CWI can apply the “As Fit-up” tolerances ONLY and the Groove angle can now range from 30-45 degrees.
All those scenarios are perfectly acceptable for that joint type.  The Designer/Engineer has one type tolerance they design within, and the shop floor/Welder/CWI have a different tolerance they work within.

Now let me give you some scenarios that DO NOT WORK:

5.)  A Designer/Engineer calls out a B-U2a with a 45 deg Groove angle.  The shop floor/Welder/CWI applies the “As Detailed” &“As Fit-up” tolerances and the Groove angle now ranges from 40-65 degrees.

6.)  A welding symbol calls for a 30 degree V-Groove on a Butt Joint.  The shop floor/Welder/CWI applies the “As Detailed” & “As Fit-up” tolerances and the Groove angle now ranges from 25-50 degrees.

The shop floor/Welder/CWI should never stack the tolerances on their own.  Again, one set of tolerances is for the Engineer/Designer, another is for the shop floor/Welder/CWI.
Clear as mud, eh?

As for the intermittent fillet weld...
The crater can remain unfilled (weld is undersize) as long as the crater falls outside the required weld length.  All other acceptance criteria have to be met for the entire weld length (including the crater).  So unacceptable contours, unacceptable undercut, unacceptable porosity, cracks, overlap in the crater would still render the weld “Unacceptable”.

As for your work environment...
Working with other CWI’s can, at times, get challenging.  Like Welders, not all have the same skill set.
I took a position once and was over 5 CWI.  In my first week I found that all Welders were qualified with FCAW but 75% of the welding was with GMAW.  I called each into my office to ask about this.  The responses were pretty lame, “That’s what we’ve always done.” “You can’t change things around here.” “There really no difference.”

Don’t Be That Guy/Gal!  Stick to the requirements and intent of the code, and when there’s a disagreement don’t argue, “Put your finger on it”.  Better to have integrity then a stable job (I’m sure some would not agree with that line).  My unstable work history has worked well for me.

I hope that helps.  Hang in there, you know this shit.

PWC